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ABSTRACT 
Tissue nutrient composition (ionome)  is widely used to diagnose nutrient problems in fruit 

crops. However, the current interpretation systems based on critical nutrient ranges disregard 

the particular nature of concentration data that leads to numerically biased diagnosis. 

Compositional Nutrient Diagnosis based on centred log ratios (CND-clr) accounts for nutrient 

interactions, but is sensitive to agro-chemical contaminants and limits multivariate analysis. The 

progressive increase of productivity that followed the development of kiwifruit as a commercial 

crop, as well as the advent of environmental awareness has caused the need  to  develop nutrient 

diagnostic tools for better managing kiwifruit orchards. The isometric log ratio (ilr) technique, 

that structures data as coordinates of linearly independent balances of components in the 

Euclidean space, allows overcoming these mathematical difficulties. Our objective is to use a 

CND-ilr framework to diagnose nutrient imbalances in kiwifruit orchards. We collected kiwifruit 

analytical data (N, S, Cl, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe) and metadata in 433 kiwifruit production 

areas. We developed optimum ranges of ilr balances to reach high yield standards and computed 

the Mahalanobis distance as nutrient imbalance predictor. The Mahalanobis distance must be 

less than 4.28 to reach ilr standards of true high-yielders, delimited by a yield of 43 312 kg ha-1. 

(>12,000 Trays/Ha class I fruit). High- and low-yielders differed significantly in 6 of the 12  

ilr balances.  This novel approach is promising for guiding the nutrient management of kiwifruit 

orchards. 
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INTRODUCTION 
Foliar analysis is a useful method to detect nutrient shortage in fruit crops and guide fertilization 

choices (Kenworthy, 1983). Indeed, plant analysis has the advantage over soil analysis as 

diagnostic tool for deep rooted plants that access nutrient deeper in the soil than would be 

found through normal soil analytical procedures (Smith et al. 1997).  

As diagnostic tools, Critical Nutrient Range (CNR) nutrient concentrations and Diagnosis and 

Recommendation Integrated System (DRIS) (Beaufils E.R 1973) nutrient indices – both 

commonly used to diagnose fruit crop nutrition – were found moderately to closely correlated 

(Parent et al., 1993; Parent et al., 1994a; Urano et al., 2007; Serra et al., 2010; Camacho et al., 

2012). However, in several studies, they returned conflicting diagnoses (Silva et al., 2004; 

Blanco-Macias et al., 2009; Huang et al., 2012; Wairegi and van Asten, 2012). In this respect, 

Parent et al. (2012a) demonstrated that leaf nutrient signature standards developed in terms 

nutrient ranges or DRIS ratios are numerically biased. Parent and Dafir (1992) rectified DRIS 

using the centred log-ratio (clr) technique – proposed by Aitchison (1986) for compositional 

data – to conduct Compositional Nutrient Diagnosis (CND-clr). The critical nutrient range 

approach, DRIS and CND-clr nutrient indices were found to be moderately to closely related to 

each other (Parent et al., 1994a; Parent et al., 1994b; Wairegi and van Asten, 2011; Parent, 2011; 

Wairegi and van Asten, 2012). However, there were still some difficulties with CND-clr as 

follows (1) the occurrence of a singular matrix in multivariate analyses computations (due to 

closure of indices to a zero-sum) made clr an inappropriate transformation, (2) the geometric 



mean of the whole unstructured vector was affected by large variations in micronutrient 

concentrations due to fungicide applications.  

The isometric log-ratio (ilr) transformation, on the other hand, generates linearly independent 

variables computed as structured balances of components or groups of components (Egozcue et 

al., 2003). To date, CND-ilr has been used to classify the nutrient composition of several fruit 

crops (Parent, 2011; Parent et al., 2012b; Hernandes et al., 2012; Marchand et al., 2013; Parent 

et al., 2013). 

In recent years, little attention has been given to the diagnosis of nutritional disorders in New 

Zealand kiwifruit (Actinidia deliciosa (A. Chv) C.F. Liang et A.R. Ferguson var deliciosa) because 

the kiwifruit industry was initially confined to the Bay of Plenty (New Zealand)  deep volcanic 

ash soils where few obvious nutritional problems were encountered (Smith et al. 1997). With 

the expansion of production to other soil types and with improved farming systems giving 

increased productivity, which has generated new problems related to crop nutrition. These 

coupled with increase environmental awareness has necessitated the development of improved 

nutrient diagnostic tools for managing kiwifruit orchards. 

Our objective was to design a CND-ilr method for coherently assessing kiwifruit nutrient status 

for orchards in the North Island of New Zealand and we expect that the calculated ideals should 

be approximately correct for kiwifruit grown in other regions.  

THEORY 

COMPOSITIONAL ANALYSIS 
Concentration data belong to the compositional data class, i.e. data that add up to a constant sum 

such as 1, 100%, 1000 g kg-1 or 1,000,000 as ppm. Because they are strictly positive data closed 

to a bounded space, and exhibit important numerical properties leading to numerical biases in 

multivariate analysis as follows: 

 Redundancy: the amount of one component can be calculated by the difference between the 

constant scale and the sum of the others, hence there are D-1 degrees of freedom in a D-parts 

composition and a D-parts composition has rank D-1 (Aitchison and Greenacre, 2002). On 

the other hand, because any of the D(D-1)/2 dual ratios between components can be 

computed from other ratios, they convey redundant information and spurious correlations. 

These problems can be solved using D-1 variables. Because log ratios are log contrasts, 

assigning orthogonal coefficients to log ratios provide D-1 orthogonal, i.e. linearly 

independent, log contrasts. 

 Scale dependency: results differ whether concentration data are scaled on dry or wet basis 

or any nutrient basis forming a stoichiometric rule (e.g. N, P,K, Ca, Mg as in Ingestad et al., 

1987). This is an apparent nonsense for a coherent system where parts are interconnected. 

Because scale change (e.g. between dry and fresh weight basis) is driven by component 

removal or addition (e.g., water), scale change depends on the way a composition vector is 

expanded or not. The addition of a component to the composition just provides an additional 

dimension to that space, not another scale. 

 Non-normal distribution: concentration data constrained to closed space (i.e. measurement 

unit) are only allowed to range between 0 and the unit of measurement according to a log-



logistic distribution (Bacon-Shone, 2011; Parent et al., 2012a). In contrast, a log ratio 

between two components allows scanning across the unconstrained real space (±). As a 

result, all log-ratio transformed values cannot produce confidence intervals below 0 and the 

unit of measurement after their back-transformation to original units. 

Those three numerical biases are a consequence of inherently closing the compositional space. 

The closure operator C computes the constant sum assignment as follows (Aitchison, 1986): 
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Where κ is the unit of measurement and ci is the ith part of a composition containing D parts. 

When conducting foliar nutrient diagnosis, it is convenient to include a filling value (Fv) 

computed by difference between κ and the sum of all nutrients because the ilr values can be 

back-transformed to the familiar unit of measurement rather than any sum of nutrients. The 

main components of the filling value are C, O and H, as found in products of photosynthesis. 

Because one component of the simplex can be computed by subtracting the sum of the other 

components from total sum, there are D-1 degrees of freedom in a D-parts composition 

(Aitchison and Greenacre, 2002).  

Log ratios are log contrasts, i.e. log(A/B) = log(A) – log(B), that, after multiplication by 

orthogonal coefficients, become orthogonal log contrasts, balances or coordinates, with D-1 

degrees of freedom.  

Balances are binary partitions between components of some whole. The ilr technique (Egozcue 

et al., 2003) allows projecting the simplex SD into a Euclidean space of D-1 non-overlapping 

orthogonal log-contrasts between the geometric means of two components or subsets of 

components. Such balance variables are amenable to multivariate analysis without bias 

(Filzmoser and Hron, 2011). A system of balances can be formalized in a sequential binary 

partition (SBP)  that arranges elements hierarchically into ad hoc functional subsystems. A SBP 

is a (D-1)×D matrix, in which parts labelled “+1” (group numerator) are contrasted with parts 

labelled “-1” (group denominator) in each ordered row (see Table 1 for an example). A part 

labelled “0” is excluded from the balance. The composition is partitioned sequentially at every 

ordered row into two contrasts until the (+1) and (-1) subsets each contain a single part. Fv  

(filling value) is the unmeasured elements in the leaf analysis which usually include carbon, 

hydrogen, oxygen and a small amount of silicon.   Balances are computed as follows (Egozcue 

and Pawlowsky-Glahn, 2005):  
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Where, in the jth row of the SBP,    
   and   

-
 are the numbers of components in the plus (+) or 

group and the minus (–) or group, respectively,  (  
 ) is the geometric mean of components in 

the + (plus) group and  (  
-
) is the geometric mean of components in the – (minus) group. The 

natural log of the ratio of geometric means is a log-contrast; the preceding coefficient is the 

orthogonal coefficient assuring orthogonality between ilr coordinates.  



Table 1 Sequential Binary Partition 

  J N P S Cl K Ca Mg B Cu Zn Mn Fe Fv n+ n- Ilr definition [c- | c+] 

ilr1 1 1 1 1 1 1 1 1 1 1 1 1 -1 12 1 [Fv | Fe,Mn,Zn,Cu,B,Mg,Ca,K,P,Cl,S,N] 
ilr2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 0 8 4 [Fe,Mn,Zn,Cu | B,Mg,Ca,K,P,Cl,S,N] 

ilr3 1 1 1 1 1 1 1 -1 0 0 0 0 0 7 1 [B | Mg,Ca,K,P,Cl,S,N] 

ilr4 1 1 1 1 -1 -1 -1 0 0 0 0 0 0 4 3 [Mg,Ca,K | P,Cl,S,N] 

ilr5 1 1 -1 -1 0 0 0 0 0 0 0 0 0 2 2 [Cl,S | P,N] 

ilr6 1 -1 0 0 0 0 0 0 0 0 0 0 0 1 1 [P | N] 

ilr7 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 1 [Cl | S] 

ilr8 0 0 0 0 1 -1 -1 0 0 0 0 0 0 1 2 [Mg,Ca | K] 

ilr9 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 1 [Mg | Ca] 

ilr10 0 0 0 0 0 0 0 0 1 1 1 -1 0 3 1 [Fe | Mn,Zn,Cu] 

ilr11 0 0 0 0 0 0 0 0 1 1 -1 0 0 2 1 [Mn | Zn,Cu] 

ilr12 0 0 0 0 0 0 0 0 1 -1 0 0 0 1 1 [Zn | Cu] 

n+  = number of plus signs and n- = number of minus signs 

The SBP presented in Table 1 was elaborated from current knowledge on nutrient interactions 

in plants (Bergmann, 1988; Marschner, 1995; Malavolta, 2006). It should be mentioned that, due 

to orthogonality, the way balances are structured does not influence the results of multivariate 

linear statistical analyses performed on them. In this paper, balances are conventionally noted as 

[-1 group | +1 group] because in algebra negative numbers are located on the left side of the 

zero. As a result, when– group loads more, balance leans to the left and when + group loads 

more, balance leans to the right. For example, the ilr6  counterpart of the [P | N] partition is 

√
 

 
  
 

 
. As N loads more on this ilr, the ilr increases in value and the [P | N] partition leans to the 

right due to heavier weight in the N bucket compared to the P. 

DISSIMILARITIES 
The distance between an observed leaf nutrient assemblage (ionome)  and a known reference 

can be used as imbalance index. In an orthogonal system of axes, like the ones obtained using the 

ilr transformation, it is possible to compute Euclidean distances. Alternativly, the Mahalanobis 

distance which is  widely used in ecology to compare groups of objects to each other (Legendre 

and Legendre, 2012) can be used to account for the covariance structure of the nutrient 

balances. Lovell et al. (2011) showed that Euclidean distances between two compositions are 

always larger when computed across natural log of components compared to their associated 

ilrs.  Parent et al. (2012a) showed that the same reasoning applies to Mahalanobis distances. 

Numerical biases can thus be revealed by positive shift from ilr-based distances to natural log 

based distances. 

CLASSIFICATION OF NUTRIENT BALANCES 

For diagnostic purposes, there is a need to split  the resultss into low- and high-productivity 

groups. There is also a need for a predictor index that allows separating balanced from 

unbalanced nutrient signatures. The classification procedure used herein is similar to Cate-

Nelson’s (Nelson and Anderson, 1984) as improved by Parent et al. (2012a). The Cate-Nelson 

procedure (see figure 2) is commonly used in soil fertility studies to partition soil test into 



quadrants to illustrate situations where crops are likely to be responsive or non-responsive to 

added nutrients. In this paper, we interpreted every quadrant in terms of performance indices 

commonly used in system diagnosis to distinguish noise from signals (Swets, 1988) according to 

response and predictor delimiters. Each quadrant defined a response class as follows: 

 True positive (TP: nutrient imbalance): low yield crops correctly diagnosed as 

imbalanced (above critical index). At least one nutrient is imbalanced. 

 False positive (FP: type I error): high yield crops incorrectly identified as imbalanced 

(above predictor critical index). FP observations indicate luxury consumption of 

nutrients by the plant. 

 True negative (TN: nutrient balance): high yield crops correctly diagnosed as balanced 

(below predictor critical index). The nutrient status of the plant is adequate. 

 False negative (FN: type II error): low yield crops incorrectly identified as balanced 

(below critical index). FN observations indicate the impact of other limiting factors on 

crop performance.  

The performance of the classification was measured by five indices: 

 Sensitivity: probability that a low yield is imbalanced, as TP/(TP+FN) 

 Specificity: probability that a high yield is balanced, as TN/(TN+FP) 

 Positive predictive value (PPV): probability that an imbalance diagnosis returns low 

yield, as TP/(TP+FP) 

 Negative predictive value (NPV): probability that a balance diagnosis returns high yield, 

as TN/(TN+FN) 

 Accuracy: probability that an observation is correctly diagnosed as balanced or 

imbalanced, as (TP+TN)/(TP+TN+FP+FN) 

The classification can be optimized using receiving operating characteristic (ROC) curves (Swets, 

1988) (see figure 1a). The predictor delimiter corresponds to a compromise between sensitivity 

and specificity, (see Figure 1b) where the maximal value of sensitivity × specificity is chosen (the 

nearest point to the [1,1] top right corner of the sensitivity versus specificity plot). The area 

under the sensitivity versus specificity curve (AUC) can also be used as an accuracy index for the 

partition (Swets, 1988).  

Because crop yield is a continuous variable, a procedure is needed to optimize the response 

delimiter. In our survey datasets, true negative (TN) specimens represent the reference 

population. The Mahalanobis distance can be used as strong nutrient response predictor, as 

computed between observations and the barycentre of the TNs according to the covariance 

structure of TNs. Because TNs are not defined a priori (assumed value) , an iteration procedure 

is needed to identify appropriate values. For a given response (crop yield) delimiter, the 

predictor is initiated using high-yielders as reference points for comparison and thereafter, a 

predictor value is selected. The delineated TN specimens are then used as the reference 

population for the computation of the Mahalanobis distance. The TN specimens are resampled 

and the Mahalanobis distance is recomputed iteratively until two iterations classify observations 

identically. The Moore-Penrose pseudo-inversion was used to avoid singularities in the 

inversion of the covariance matrix (Prekopcsák and Lemire, 2012). Procedures to optimize 

response and predictor delimiters are developed in the Material and methods section. 



MATERIAL AND METHODS 

DATA SET 
The metafile comprised 431 observations with plant compositions and metadata collected in 

commercial kiwifruit orchards (‘Hayward’) in the North Island of New-Zealand across two 

farming systems (organic and conventional) and several soil types. From 2003 to 2010, 2 to 3 

recently matured, fully expanded leaves taken from the 2nd lateral of 32 vines (excluding young 

vines and sick leaves) were taken within 0 to 4 weeks after flowering. The criterion of crop 

performance were yield (kg·ha-1 of grade one export quality fruit). Because of the 2011 outbreak 

of PSA (Pseudomonus Syringii actinidia), copper sprays are today widely used. However, the 

present dataset is pre-PSA and therefore only includes orchards with zero or low use of 

fungicide following  approved Global-gap and Certified Organic practices (when applicable). 

FOLIAR ANALYSIS 
The P, K, Ca, Mg, Zn, Cu, Mn, Fe, and B concentrations were determined in plant tissues by IPC-

OES after microwave digestion (Blackmore et al., 1987). Chlorine was extracted with 0.01 M 

CaSO4 and quantified by ion chromatography. Total N and S were determined by dry combustion 

using a Leco 2000 CNS analyser. 

OPTIMIZATION OF DELIMITERS IN BINARY CLASSIFICATION  
As mentioned in the theory section, there is a need for an iterative procedure to define 

predictors because in survey analyses the definition of the reference population depends on the 

Mahalanobis distance computed from the reference population (   ). The iterative procedure 

is described as follow. 

 For a given response (crop yield) delimiter, the predictor is initiated using high-yielders as 

reference specimens for computing    . 

 A predictor delimiter is selected and its barycenter and covariance are computed among 

newly delineated TN specimens to solve    .  

 The     is iterated until two iterations classifies observations identically. 

The Moore-Penrose pseudo-inversion was used to avoid singularities in the inversion of the 

covariance matrix (Prekopcsák and Lemire, 2012). 

In a scatter of n observations, there are n possible response delimiters and n possible predictor 

delimiters, resulting in n×n possible binary classifications. The yield response delimiter 

returning the largest area under the sensitivity versus specificity curve (AUC) was selected.  

STATISTICAL ANALYSIS 
Statistical computations were conducted in the R statistical environment (R Development Core 

Team 2012). The “compositions” package (van den Boogaart et al., 2013) was used for ilr 

computations. The “robCompositions” (Templ et al., 2013) package was used to robustly impute 

missing concentrations values. The "mvoutlier" package (Filzmoser and Gschwandtner, 2013) 

was used to detect outliers across the dataset. Discriminent analyses were performed using the 

"ade4" package (Chessel et al., 2012). 



RESULTS 

DATA PRE-TREATMENT 
A number of 17 missing values had to be imputed, essentially Cl concentrations. The outlier 

detection procedure eliminated 18 observations in the data set, leaving 413 observations for 

further analyses.  

CLASSIFYING OBSERVATIONS 
The area under the ROC curve (AUC) reached a peak at 0.92, corresponding to a yield delimiter 

of 46 339 kg ha-1 (Error! Reference source not found.a).  

The ROC curve (sensitivity versus specificity relationship) obtained a realisable high yield 

optimum value of 46 339 kg ha-1 is shown by the thick black line in Error! Reference source 

not found.b.  

The ROC curve did not show a regular decrease of sensitivity as specificity increased, as usually 

observed in ROC diagnoses. This phenomenon is due to the re-sampling procedure (see 

methodology section) that is generally not needed in conventional clinical studies.  

The closest point to the [1,1] corner corresponded to a specificity of 100%, a sensitivity of 91% 

and a Mahalanobis distance (   ) of 4.21. This critical     was used as predictor delimiter 

between balanced and unbalanced specimens. 

Figure 1a Receiving Operating    Figure 1b Sensitivity Vs Specificity 

Characteristic Curve 

 

  



Figure 2 shows data partitioned into four quadrants. The semi-transparent ellipse encloses 95% 

of the theoretical distribution of points. Statistics corresponding to this partition are presented 

in Table 2.  

All specimens declared imbalanced yielded less than cut-off yield value (PPV = 100%). On the 

other hand, nearly 2 balanced specimens out of 5 yielded more than cut-off yield value 

(NPV=42%).  

Figure 2 Cate Nelson plot of Kiwifruit Ionome  

Mahalanobis distance Vs Productivity 

 

 

TABLE 2. DATA CLASSIFICATION STATISTICS 

Predictor (Mahalanobis distance) 4.21 
Response (kg ha-1) 46 339 

TN counts 25 

FN counts 35 

TP counts 354 

FP counts 0 

Sensitivity 91% 

Specificity 100% 

PPV 100% 

NPV 42% 

Accuracy 92% 

 

  



The contingency bar plot in  

Figure 33 shows counts in quadrants containing observations (TN, FN and TP) by soil type (see 

table 5) and farming system (Conventional Vs Organic).  

There were 25 high-yielding observations (TN quadrant), all grown under conventional farming.  

Most true high yielders (TN) were grown in the Opotiki ash and KKBSL soil types (20/25).  

On the other hand, 41% of the true low-yielders (TP) were grown in the KKSL soil type under 

conventional practices (72/352) and Oropi soil type under organic practices (64/352).  

Most false low-yielders (FN) were found under conventional practices in the Oropi (7/35), as 

well as KKBSL , Opotiki ash (6/35) and Whaka (6/35) soil types.  

 
FIGURE 3. 

 CONTINGENCY BAR PLOT OF COUNTS IN EACH QUADRANT (TN, FN, TP, FP)  

BY SOIL TYPE AND FARMING SYSTEM. 

 

  



TABLE 5. 

BRIEF DESCRIPTION OF SOIL TYPES ASSOCIATED WITH THIS  DATA SET 

Site # obs. Soil type 

Clay silt 

loam 

21 Fluvent derived mainly from shale (Greywake) alluvial deposits, drained 

by ditches; flooding is now rare. 

Kairanga   3 Fluvent derived mainly from Rhyolite alluvial deposits; naturally deficient 

in boron. 

Kerikeri 2 Udand derived from older Basaltic volcanic activity; gravelly coarse soil 

naturally high in iron. 

KKBSL 75 Katikati black sandy loam; andesitic Udand middle aged, moderately high 

in aluminum with aeolian volcanic ash content. 

KKSL 85 Katikati sandy loam, same andesitic Udand as KKBSL except it has never 

been under water in the harbor. 

KKSL + 

shells 

4 Fine textured andesitic Udand as KKBSL except it contains sea shells. 

Opotiki 

Ash 

38 Udand, fine textured mixed andesitic and rhyolitic ash receiving less 

rainfall than other Udand soils. 

Oropi 104 Intermediate Udand /vitrand, fine textured andesitic and rhyolitic ash.  

Paengaroa 20 Very young soils Vitrand  mixed textured rhyolitic with Pongakawa soil 

inclusions that tend to be more pumice rich.  

Waihi 16 Mature andesitic ash Udand, fine textured.  

Whaka 46 Whakamarama, mature fne textured andesitic ash Udand, more heavily 

leached than other soils. 

 

  



Median ilr values of TN specimens, associated with their confidence intervals, are presented in 

Table 1 below.  

TABLE 1.  

CONFIDENCE INTERVALS OF ILR VALUES (       ) FOR TRUE NEGATIVE (TN) 

SPECIMENS (N = 33) IN THE NEW ZEALAND KIWIFRUIT DATA SET (LL = LOWER 

LIMIT; UL = UPPER LIMIT).  

Ilr definition TN TP 

LL Median UL LL Median UL 

[Fv | Elements] -6.683 -6.654 -6.626 -6.677 -6.666 -6.656 
[Oligo | B+Macro] 7.979 8.070 8.161 7.974 7.996 8.019 

[B | Macro] 4.946 4.989 5.032 4.934 4.949 4.963 

[Mg,Ca,K | P,Cl,S,N] -1.044 -0.980 -0.916 -0.995 -0.978 -0.961 

[Cl,S | P,N] 0.372 0.438 0.504 0.443 0.460 0.476 

[P | N] 1.618 1.661 1.704 1.594 1.607 1.620 

[Cl | S] -0.418 -0.361 -0.304 -0.315 -0.298 -0.282 

[Mg,Ca | K] 0.735 0.786 0.838 0.759 0.775 0.791 

[Mg | Ca] 1.316 1.352 1.388 1.387 1.398 1.409 

[Fe | Mn,Zn,Cu] -0.807 -0.743 -0.678 -0.689 -0.670 -0.652 

[Mn | Zn,Cu] -1.383 -1.313 -1.243 -1.304 -1.280 -1.257 

[Zn | Cu] -0.724 -0.663 -0.603 -0.707 -0.683 -0.658 
 NOTE THAT THE BALANCES ARE CONVENTIONALLY NOTED AS [-1 GROUP | +1 GROUP]. 

 

NUTRIENT BALANCE COMPARISONS BETWEEN TN AND TP SPECIMENS 
Tukey’s test allowed detecting in which balance significant differences occurred between TN and 

TP specimens (  



Figure 4).  

The [P | N], balance showed a (TP-TN) difference significantly lower than 0, because N was 

exceedingly larger than P in TN specimens.  

The [Cl | S] balance was significantly higher in TP specimens, indicating higher S over Cl log-ratio 

in TP specimens.  

Finally, there was a significant difference in the [Mg | Ca] balance, where the weight of Mg Ca 

was significantly greater in TN specimens. Differences are significant (P < 0.05) where they do 

not overlap zero.  

  



Figure 4. Tukey test (P = 0.05) for ilr differences between true positive (TP) and 

true negative (TN).  

 

NOTE THAT THE BALANCES ARE CONVENTIONALLY NOTED AS [-1 GROUP | +1 GROUP]. 

 

PAN BALANCE REPRESENTATION 
Balances can be represented metaphorically using a stand-alone mobile diagram with fulcrums 

and weighing pans, where changing nutrient concentrations or contents in buckets impact 

directly on nutrient balances at fulcrums. Error! Reference source not found.5 presents a 

balance dendrogram derived from the SBP with TN and TP median ilr values at fulcrums as well 

as their confidence intervals. The average ilr values at fulcrums are used for diagnostic purposes 

while the back-transformed TN ilr  values to concentrations are laid down in weighing pans to 

support the interpretation of balances in terms of relative shortage, sufficiency or excess of 

contributing nutrients. However, the analyst should be reminded that sufficiency or excess of 

any nutrient may only be diagnosed in relation to other nutrients in the balance system. The 

weighing pans facilitate adjusting the balances correctly (through fertilisation)  by shifting the 

fulcrums towards the TN depicted as a grey circle.  For example, the lower the [Mg | Ca] balance 

in TN specimens can be interpreted as a combination of lower Ca and higher Mg concentrations 



compared to TP specimens. In general, differences between TN and TP were relatively small in 

terms of concentrations. Overall, the pan balance representation of the ionomes showed that N, 

Cl and Mg concentrations were lower in TP compared to the TN specimens. 

FIGURE 5.  

MOBILE-AND-FULCRUMS SCHEME OF A BALANCE SYSTEM FOR THE KIWIFRUIT IONOME.  

 

 

AVERAGE ILR VALUES ACROSS SPECIMENS ARE LOCATED AT FULCRUMS. DEPARTURE FROM TN 

RANGE INDICATES RELATIVE NUTRIENT IMBALANCE. CONCENTRATIONS LOCATED IN WEIGHING 

PANS ARE BACK-TRANSFORMED AVERAGE ILR VALUES FOR TN AND TP SPECIMENS. NOTE THAT 

THE BALANCES ARE CONVENTIONALLY NOTED AS [-1 GROUP | +1 GROUP]. 

 

INFLUENCE OF PRODUCTION SYSTEM ON NUTRIENT BALANCE IN KIWIFRUIT 
Discriminant analyses performed across ilr balances indicated significant differences between 

score means (boxes) of farming systems (6) and soil types (7).  

FIGURE 6.  
DIFFERENCE IN IONOME BETWEEN FARMING SYSTEMS. 

 
CONFIDENCE INTERVALS (P=0.05) OF SINGLE AXIS DISCRIMINANT SCORES ABOUT POPULATION (THIN LINE – STANDARD 

DEVIATION) AND ABOUT MEAN (THICK LINE – STANDARD ERROR) FOR TWO FARMING SYSTEMS. 

 

 

 

 

 



Figure 1.  

Confidence intervals (p=0.05) for ilr nutrient balances for soil types and farming regimes.  

 

 

 



Figure 1 presents the confidence interval (p=0.05) about the mean of each balance for both 

farming systems compared to the TN specimens.  

Organic farming resulted in less nutrients accumulations than the filling value compared to 

conventional farming and TN. The dissimilarity is attributable to micronutrients, as shown by 

the significant difference in the [Cationic micronutrients | Macronutrients+B] balance. Other 

significant differences between organic farming and TNs were found in the [Cl,S | P,N], [P | N], 

[Cl | S] and [Mg | Ca] balances. Overall, all balances in conventional farming practices did not 

differ significantly from TN, compared to half of them for organic farming practices.  

 

 

 



Figure 1 also showed the state of imbalance for each soil type compared to TN. Notably, soils related to the highest number of balances that do not differ 

significantly from TN were KKSL, KKBSL, Paengaroa and Waihi (12/12), Opotiki flats (11/12) as well as Kairanga and KKSL+Shells (10/12). On the other hand, 

Clay silt loam soils and Kerikeri showed the largest number of balances that differed significantly from TN (4/12), followed by Oropi (3/12). 

 



 

 

Figure 8.  

DISCRIMINANT ANALYSIS OF NUTRIENT ILR BALANCES BY SOIL TYPE 

 

 Large semitransparent ellipses that enclose swarms of data points represent regions that include 95% of 

the theoretical distribution of canonical scores for each soil type. Smaller plain white ellipses represent 

confidence regions about means of canonical scores at 95% confidence level. The optimum TN point is 

where the zero lines cross.  

The discriminant analysis performed across soil types (Figure 8) distinguished four groups. One 

group comprised KKSBL and KKSL soils, another the Waihi and the Paengoroa soils, then Oropi 

and Whaka soils and, finally the Clay silt loam and the Opotiki ash. Confidence intervals (p=0.05) 

about the mean of each balance across soil types  

  



NUMERICAL BIASES IN CONCENTRATION VALUES AND DRIS INDICES 
In CND-ilr, there is no conflicting interpretation of nutrient levels and balances as could be the 

case when interpreting the results of critical value and DRIS diagnoses separately. Numerical 

biases of critical ilr concentration ranges (a) and DRIS (b) are shown in figure 9a & 9b as 

departure from unbiased Mahalanobis distance using ilr coordinates.  

FIGURE 9.  
NUMERICAL BIASES IN ILR CONCENTRAITON VALUES AND DRIS INDICES. 

 

DISCUSSION 

CLASSIFICATION 
The area under the ROC curve (AUC) of 0.91 (Error! Reference source not found.a) is 

comparable to the AUC for fairly informative tests (0.80-0.98) in medical sciences (Swets, 1988). 

The accuracy of 92% was comparable to values > 80-90% reported by Baxter et al. (2008) in 

plant nutrition. Values projected in the FN quadrant could have been partially hidden by factors 

external to the ionome (e.g. climate, diseases, etc.), while the three observations projected into 

the FP quadrant may have been cases of luxury consumption. 

PAN BALANCE DIAGNOSIS 
Walworth and Sumner (1987) and Marschner (1995) argued that optimal ratios between 

nutrients are insufficient criteria for diagnostic purposes, because it would be impossible to 

determine whether a nutrient level is too high (excessive), adequate (sufficient) or too low 

(deficient) in the ratio. Indeed, although concentrations and ratios (or balances) portray the 

same status, they should not be interpreted separately as commonly done, possibly leading to 

conflicting interpretation. This problem of interpretation is solved easily by the pan balance as 

metaphor for coherent concepts relating nutrients and balances to each other. The design of the 

balance system can be derived from plant physiology, soil biogeochemistry or crop management 

to facilitate interpretations (Error! Reference source not found.5).  The mean ilr values of TN 

specimens back-transformed to concentrations in weighing pans allow interpreting the 

analytical results of specimens in relative shortage, sufficiency or excess, as already diagnosed 



by ilr and the Mahalanobis distance. However, relative shortage, sufficiency or excess diagnoses 

should be based on balances rather than concentrations alone. 

As a result, any deviation in concentration from the ones indicated in weighing pans must affect 

balances directly, hence avoiding misinterpreting diagnoses conducted independently on 

concentrations and ratios. In the present study, , for a sample mapped at the TP mean (Figure 

12), a shift of the [Mg | Ca] fulcrum to the left by adding more Mg should rebalance the cationic 

balances, but at risk to misbalance [Mg,Ca,K,P,Cl,S,N | B] in this complex system. Shifted balances 

should thus be monitored regularly for possible adjustment. In the same perspective, increasing 

Cl could shift [Cl | S] to the left, [P,N | Cl,S] to the right and so on for the higher-level balances in 

the hierarchy of the balance system. On the other hand, increasing N could not only shift [P | N] 

to the right, but also [Cl,S | P,N], which might be already too far in the right direction.  

Proper N and Cl management is central to the kiwifruit production. Hasey et al. (1997) found 

that foliar N was lower while leaf Cl and Na were higher in organic orchards although all 

nutrient levels were within acceptable concentration ranges. However, high N may increase vine 

yield and average fruit weight and produce higher proportions of over-ripened and rotten fruit 

at harvest (Tagliavini et al., 1995; Costa et al., 1997), or may show no effect on fruit yield, size or 

fruit quality at harvest and be associated with fruit softness during storage (Johnson et al., 

1997). In fertilizer experiments, Prasad et al. (1993) found foliar Cl ranging between 0.6 and 

2.1% with toxic threshold at 1.5% in five ‘Hayward’ kiwifruit orchards on the North Island of 

New Zealand. We found that high yield of kiwifruit was associated with average Cl concentration 

of 0.71% in TNs compared to 0.61% in TPs.  

The pan balance model provides an overall view on how nutrient additions may contribute 

rebalancing nutrient relationships in kiwifruit orchards. The approach is intuitive and applicable 

to any natural system. Numerical biases explain why the critical concentration ranges that do 

not account for nutrient interactions and DRIS that has unstructured geometry often produce 

conflicting diagnoses. In contrast, the nutrient balance concept is a stand-alone diagnostic 

system of linearly independent and organically linked variables within the same setup where the 

analytical results and their balances can be interpreted coherently.  

INFLUENCE OF PRODUCTION SYSTEM ON NUTRIENT BALANCE IN KIWIFRUIT 
Discriminant analyses confirmed that expanding the kiwifruit production to other soil types and 

farming systems increased productivity problems related to crop nutrition. Results reflected the 

large differences between agro-ecosystems and could be used to identify in what direction 

efforts should be directed to alleviate nutrient imbalance in kiwifruit orchards. Agro-ecosystems 

under organic practices were less productive compared to conventional farming systems, likely 

due to nutrient imbalance. In our dataset, equilibrating the nutrient status of these organic 

orchards might be performed by increasing the Cl content in leaves, such that balance [Cl | S] is 

decreased to reach the associated TN range. On the other hand, sufficiently increasing Mg 

content could rebalance [Mg | Ca] in TP specimens and reach the TN range. The addition of N 

would help rebalancing [P | N] in the TPs. The addition of Cl, Mg and N would also shift the 

[B | Mg,Ca,K,Cl,S,P,N] balance to the right, and this should be monitored. 

Because most organic orchards are grown on Oropi soil, it was thus not possible to attribute 

imbalance to farming system or soil type.   



A key factor that will have caused differences in ilr confidence intervals (Figures 6 & 7) is  

because bud break enhancers like HiCane™ is routinely used in New Zealand conventional 

orchards but it is prohibited under organic certification, thus organic orchards produced less 

fruit for 2 reasons. 

1. On organic orchards it is normal that a less number of buds break dormancy (about 4%)  

than those grown with conventional methods.  

2. Where bud break enhancers are used the bud break is advanced by about four weeks 

giving the conventional vines the advantage of a longer growing season 

In order to compensate for later maturing leaves in the organic orchards the mean leaf sampling 

date is about four weeks after the conventional orchards. Because certain nutrient 

concentrations tend to increase whilst  others decrease as spring progresses the ionome will 

appear to be different according to regime unless week number is compensated for. 

The KKSL and KKBSL soil group agro-ecosystems, where kiwifruit was traditionally grown, met 

all nutrient balance requirements for producing high yield of kiwifruits ( 

 

 



Figure 1). The KKBSL and KKSL soils both contain ash from the Mayor Island eruption. The 

KKBSL is nearly all adjacent to Tauranga Harbour and is probably uplifted harbour floor. The 

region where these two soils occur consistently suffer from very strong westerly spring winds 

coming from over the Kaimai range, which does much damage to the young growing shoots  

reducing the yield potential significantly. Conversely Opotiki is well known to have high 

sunshine hours over the course of the growing season to the benefit of fruit production. Because 

of these confounding differences of micro-climate  it was not possible to determine to a 

significant level whether nutrient imbalance and low yield correspond to soil type. 

To the best of our knowledge DRIS system has never previously been developed for kiwifruit,  

however after a consideration of figures 9a & 9b it is quite apparent that the development of ilr 

balanced nutrient diagnoses is a significant improvement over the DRIS system and is a huge 

leap forward from the previous CNR method.   

CONCLUSION 
This paper presents a novel stand-alone balance approach to diagnose nutrient imbalance in 

kiwifruit orchards. The pan balance model differs markedly from the traditional critical nutrient 

range approach illustrated by Liebig’s barrel and from the DRIS; when conducted separately, the 

critical value approach and DRIS may yield conflicting results. The ilr concept reflects balances 

between two or more nutrients that facilitate interpreting the diagnosis. The diagnosis is 

conducted in three steps: 1) compute the Mahalanobis distance as a measure of general nutrient 

imbalance; 2) in case of imbalance, select the balances differing significantly from TN specimens; 

3) diagnose concentration values in terms of relative shortage, sufficiency or excess. 

The nutrient pan balance model is intuitive and coherent and allows nutrient balances and 

concentrations to be interpreted simultaneously, hence avoiding numerical biases and 

conflicting interpretations. We found that kiwifruit nutrition varied widely in New Zealand and 

that Black Sandy Loam soil type was the most properly balanced agro-ecosystems.  
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